Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Oncol ; 14: 1346502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577337

RESUMO

Introduction: Although checkpoint inhibitors (CPIs) have improved outcomes for patients with metastatic melanoma, those progressing on CPIs have limited therapeutic options. To address this unmet need and overcome CPI resistance mechanisms, novel immunotherapies, such as T-cell engaging agents, are being developed. The use of these agents has sometimes been limited by the immune response mounted against them in the form of anti-drug antibodies (ADAs), which is challenging to predict preclinically and can lead to neutralization of the drug and loss of efficacy. Methods: TYRP1-TCB (RO7293583; RG6232) is a T-cell engaging bispecific (TCB) antibody that targets tyrosinase-related protein 1 (TYRP1), which is expressed in many melanomas, thereby directing T cells to kill TYRP1-expressing tumor cells. Preclinical studies show TYRP1-TCB to have potent anti-tumor activity. This first-in-human (FIH) phase 1 dose-escalation study characterized the safety, tolerability, maximum tolerated dose/optimal biological dose, and pharmacokinetics (PK) of TYRP1-TCB in patients with metastatic melanoma (NCT04551352). Results: Twenty participants with cutaneous, uveal, or mucosal TYRP1-positive melanoma received TYRP1-TCB in escalating doses (0.045 to 0.4 mg). All participants experienced ≥1 treatment-related adverse event (TRAE); two participants experienced grade 3 TRAEs. The most common toxicities were grade 1-2 cytokine release syndrome (CRS) and rash. Fractionated dosing mitigated CRS and was associated with lower levels of interleukin-6 and tumor necrosis factor-alpha. Measurement of active drug (dual TYPR1- and CD3-binding) PK rapidly identified loss of active drug exposure in all participants treated with 0.4 mg in a flat dosing schedule for ≥3 cycles. Loss of exposure was associated with development of ADAs towards both the TYRP1 and CD3 domains. A total drug PK assay, measuring free and ADA-bound forms, demonstrated that TYRP1-TCB-ADA immune complexes were present in participant samples, but showed no drug activity in vitro. Discussion: This study provides important insights into how the use of active drug PK assays, coupled with mechanistic follow-up, can inform and enable ongoing benefit/risk assessment for individuals participating in FIH dose-escalation trials. Translational studies that lead to a better understanding of the underlying biology of cognate T- and B-cell interactions, ultimately resulting in ADA development to novel biotherapeutics, are needed.

2.
Clin Cancer Res ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506710

RESUMO

PURPOSE: Personalized vaccines targeting multiple neoantigens (nAgs) are a promising strategy for eliciting a diversified antitumor T cell response to overcome tumor heterogeneity. NOUS-PEV is a vector based personalized vaccine, expressing 60 nAgs and consists of priming with a non-human Great Ape Adenoviral vector (GAd20) followed by boosts with Modified Vaccinia Ankara (MVA). Here, we report data of a phase Ib trial of NOUS-PEV in combination with pembrolizumab in treatment naïve metastatic melanoma patients (NCT04990479). EXPERIMENTAL DESIGN: The feasibility of this approach was demonstrated by producing, releasing and administering to six patients 11 out of 12 vaccines within 8 weeks from biopsy collection to GAd20 administration. RESULTS: The regimen was safe, with no treatment-related serious adverse events observed and mild vaccine-related reactions. Vaccine immunogenicity was demonstrated in all evaluable patients receiving the prime/boost regimen, with detection of robust neoantigen specific immune responses to multiple neoantigens comprising both CD4 and CD8 T cells. Expansion and diversification of vaccine-induced TCR clonotypes was observed in the post-treatment biopsies of patients with clinical response providing evidence of tumor infiltration by vaccine-induced neoantigen-specific T cell. CONCLUSIONS: These findings indicate the ability of NOUS-PEV to amplify and broaden the repertoire of tumor reactive T cells to empower a diverse, potent and durable antitumor immune response. Finally, a gene signature indicative for reduced presence of activated T cells together with very poor expression of the antigen processing machinery (APM) genes has been identified in pre-treatment biopsies as a potential biomarker of resistance to the treatment.

3.
Clin Transl Sci ; 17(2): e13736, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38362837

RESUMO

SAR439459, a 'second-generation' human anti-transforming growth factor-beta (TGFß) monoclonal antibody, inhibits all TGFß isoforms and improves the antitumor activity of anti-programmed cell death protein-1 therapeutics. This study reports the pharmacodynamics (PD) and biomarker results from phase I/Ib first-in-human study of SAR439459 ± cemiplimab in patients with advanced solid tumors (NCT03192345). In dose-escalation phase (Part 1), SAR439459 was administered intravenously at increasing doses either every 2 weeks (Q2W) or every 3 weeks (Q3W) with cemiplimab IV at 3 mg/kg Q2W or 350 mg Q3W, respectively, in patients with advanced solid tumors. In dose-expansion phase (Part 2), patients with melanoma received SAR439459 IV Q3W at preliminary recommended phase II dose (pRP2D) of 22.5/7.5 mg/kg or at 22.5 mg/kg with cemiplimab 350 mg IV Q3W. Tumor biopsy and peripheral blood samples were collected for exploratory biomarker analyses to assess target engagement and PD, and results were correlated with patients' clinical parameters. SAR439459 ± cemiplimab showed decreased plasma and tissue TGFß, downregulation of TGFß-pathway activation signature, modulation of peripheral natural killer (NK) and T cell expansion, proliferation, and increased secretion of CXCL10. Conversion of tumor tissue samples from 'immune-excluded' to 'immune-infiltrated' phenotype in a representative patient with melanoma SAR439459 22.5 mg/kg with cemiplimab was observed. In paired tumor and plasma, active and total TGFß1 was more consistently elevated followed by TGFß2, whereas TGFß3 was only measurable (lower limit of quantitation ≥2.68 pg/mg) in tumors. SAR439459 ± cemiplimab showed expected peripheral PD effects and TGFß alteration. However, further studies are needed to identify biomarkers of response.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos , Melanoma , Humanos , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Biomarcadores , Melanoma/tratamento farmacológico , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fatores de Crescimento Transformadores/uso terapêutico
4.
Melanoma Res ; 34(2): 125-133, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38348498

RESUMO

Decrease of vitamin D receptor (VDR) expression is observed in melanocytic naevi and melanoma compared to normal skin. Little is known about factors influencing VDR expression in cutaneous melanoma (CM). We investigated the correlation of VDR expression in CM with 25-hydroxy vitamin D (25OHD) levels, demographic/clinical parameters, genetic variants of VDR and pathology of the primary tumor. Demographic/clinical parameters were recorded in 407 prospectively recruited CM patients of a multi-center controlled study (ViDMe trial). We determined VDR expression both in the nucleus and in the cytoplasm by semi-quantitative assessment in CM tissue using histochemistry in 279 patients, expressed in percentages and histoscore (H-score). Genomic DNA from 332 patients was extracted to genotype thirteen VDR single nucleotide polymorphisms (SNPs) using TaqMan. VDR expression in CM tissue from 279 patients was correlated with clinical/demographic parameters and 25OHD levels (univariable and multivariable analysis), VDR SNPs (univariable analysis) and pathology parameters of primary CM tissue (univariable analysis). Cytoplasmic VDR expression was increased in patients who stated to have a high sun exposure during their life compared to patients with low sun exposure (p H-score,univariable : 0.001, p H-score,multivariable : 0.004). The A allele of the genetic VDR polymorphism Fok1 was associated with a higher expression of the VDR in the cytoplasm (p cytoplasmic, univariable : 0.001 and p H-score, univariable : 0.02). In the primary tumor, presence of mitosis (p nucleus,%, univariable : 0.002) and perineural invasion (p nucleus,%,univariable : 0.03) were significantly associated with low nuclear VDR expression. ClinicalTrials.gov Identifier: NCT01748448.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Alelos , Melanoma/genética , Receptores de Calcitriol/genética , Pele , Neoplasias Cutâneas/genética
5.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181739

RESUMO

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Assuntos
Melanoma , Humanos , Redes Reguladoras de Genes , Imunoterapia , Melanócitos , Melanoma/tratamento farmacológico , Melanoma/genética , Fator de Transcrição 4/genética , Microambiente Tumoral
7.
EMBO Mol Med ; 15(12): e18028, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38009521

RESUMO

Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.


Assuntos
Melanoma , Humanos , Camundongos , Animais , Melanoma/patologia , Células Endoteliais/metabolismo , Linfócitos T CD8-Positivos , NF-kappa B/metabolismo , Autofagia , Imunoterapia , Microambiente Tumoral
8.
Nature ; 618(7967): 1033-1040, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316667

RESUMO

Most clinically applied cancer immunotherapies rely on the ability of CD8+ cytolytic T cells to directly recognize and kill tumour cells1-3. These strategies are limited by the emergence of major histocompatibility complex (MHC)-deficient tumour cells and the formation of an immunosuppressive tumour microenvironment4-6. The ability of CD4+ effector cells to contribute to antitumour immunity independently of CD8+ T cells is increasingly recognized, but strategies to unleash their full potential remain to be identified7-10. Here, we describe a mechanism whereby a small number of CD4+ T cells is sufficient to eradicate MHC-deficient tumours that escape direct CD8+ T cell targeting. The CD4+ effector T cells preferentially cluster at tumour invasive margins where they interact with MHC-II+CD11c+ antigen-presenting cells. We show that T helper type 1 cell-directed CD4+ T cells and innate immune stimulation reprogramme the tumour-associated myeloid cell network towards interferon-activated antigen-presenting and iNOS-expressing tumouricidal effector phenotypes. Together, CD4+ T cells and tumouricidal myeloid cells orchestrate the induction of remote inflammatory cell death that indirectly eradicates interferon-unresponsive and MHC-deficient tumours. These results warrant the clinical exploitation of this ability of CD4+ T cells and innate immune stimulators in a strategy to complement the direct cytolytic activity of CD8+ T cells and natural killer cells and advance cancer immunotherapies.


Assuntos
Linfócitos T CD4-Positivos , Morte Celular , Imunoterapia , Inflamação , Neoplasias , Microambiente Tumoral , Humanos , Células Apresentadoras de Antígenos/imunologia , Antígeno CD11c/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Morte Celular/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Inata , Inflamação/imunologia , Interferons/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Células Th1/citologia , Células Th1/imunologia
9.
Cancer Cell ; 41(7): 1207-1221.e12, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37327789

RESUMO

The cell-autonomous balance of immune-inhibitory and -stimulatory signals is a critical process in cancer immune evasion. Using patient-derived co-cultures, humanized mouse models, and single-cell RNA-sequencing of patient melanomas biopsied before and on immune checkpoint blockade, we find that intact cancer cell-intrinsic expression of CD58 and ligation to CD2 is required for anti-tumor immunity and is predictive of treatment response. Defects in this axis promote immune evasion through diminished T cell activation, impaired intratumoral T cell infiltration and proliferation, and concurrently increased PD-L1 protein stabilization. Through CRISPR-Cas9 and proteomics screens, we identify and validate CMTM6 as critical for CD58 stability and upregulation of PD-L1 upon CD58 loss. Competition between CD58 and PD-L1 for CMTM6 binding determines their rate of endosomal recycling over lysosomal degradation. Overall, we describe an underappreciated yet critical axis of cancer immunity and provide a molecular basis for how cancer cells balance immune inhibitory and stimulatory cues.


Assuntos
Antígeno B7-H1 , Melanoma , Camundongos , Animais , Antígeno B7-H1/genética , Linfócitos T , Antígenos CD58/química , Antígenos CD58/metabolismo , Melanoma/genética , Melanoma/metabolismo , Ativação Linfocitária
10.
Acta Oncol ; 62(5): 480-487, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200223

RESUMO

BACKGROUND: Uveal melanoma is an orphan malignancy with very limited data on treatment options in metastatic setting. METHODS: In this single-center retrospective study, we describe real-world epidemiological and survival data on 121 metastatic uveal melanoma (MUM) patients registered in our institution. As a large tertiary referral center, almost 30% of all diagnoses in the Flemish region of Belgium were covered. Primarily, we determined whether introduction of immune checkpoint inhibitors (ICI) led to improved overall survival (OS) in MUM patients. Secondarily, response rates to ICI were assessed and we evaluated whether first-line ICI could be a valid alternative to liver-directed therapy (LDT) in liver-only disease. RESULTS: The initially perceived 10.8 months survival benefit from treatment with ICI disappeared after correction for immortality bias. By analyzing treatment type as time-varying covariate on OS, no significant benefit of ICI over other systemic therapies (HR = 0.771) or best supportive care (BSC) (HR = 0.780) was found. Also comparison of the pre-ICI versus ICI era showed no OS improvement after introduction of ICI in our center (p = 0.7994). Only liver-directed and local oligometastatic approaches were associated with a lower chance of mortality when compared to ICI (p = 0.0025), other systemic therapies (p = 0.0001) and BSC (p = 0.0003), yet without correction for selection bias. We reported overall response rates on ICI ranging from 8-15% and we found some support for neoadjuvant strategies with ICI resulting in remission or downsizing, allowing oligometastatic approaches later on. In first-line liver-only disease, median real-world progression-free survival and OS did not significantly differ between patients treated with LDT or ICI upfront (p = 0.2930 and p = 0.5461 respectively). CONCLUSION: Although we documented responses to ICI, our analyses do not demonstrate an OS benefit of ICI over alternative treatment strategies for MUM. However, local treatment options, whether liver-directed or for oligometastatic disease, may be beneficial and should be considered.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Estudos Retrospectivos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/patologia , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/patologia
11.
Sci Transl Med ; 15(691): eadd1016, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043555

RESUMO

Clinically relevant immunological biomarkers that discriminate between diverse hypofunctional states of tumor-associated CD8+ T cells remain disputed. Using multiomics analysis of CD8+ T cell features across multiple patient cohorts and tumor types, we identified tumor niche-dependent exhausted and other types of hypofunctional CD8+ T cell states. CD8+ T cells in "supportive" niches, like melanoma or lung cancer, exhibited features of tumor reactivity-driven exhaustion (CD8+ TEX). These included a proficient effector memory phenotype, an expanded T cell receptor (TCR) repertoire linked to effector exhaustion signaling, and a cancer-relevant T cell-activating immunopeptidome composed of largely shared cancer antigens or neoantigens. In contrast, "nonsupportive" niches, like glioblastoma, were enriched for features of hypofunctionality distinct from canonical exhaustion. This included immature or insufficiently activated T cell states, high wound healing signatures, nonexpanded TCR repertoires linked to anti-inflammatory signaling, high T cell-recognizable self-epitopes, and an antiproliferative state linked to stress or prodeath responses. In situ spatial mapping of glioblastoma highlighted the prevalence of dysfunctional CD4+:CD8+ T cell interactions, whereas ex vivo single-cell secretome mapping of glioblastoma CD8+ T cells confirmed negligible effector functionality and a promyeloid, wound healing-like chemokine profile. Within immuno-oncology clinical trials, anti-programmed cell death protein 1 (PD-1) immunotherapy facilitated glioblastoma's tolerogenic disparities, whereas dendritic cell (DC) vaccines partly corrected them. Accordingly, recipients of a DC vaccine for glioblastoma had high effector memory CD8+ T cells and evidence of antigen-specific immunity. Collectively, we provide an atlas for assessing different CD8+ T cell hypofunctional states in immunogenic versus nonimmunogenic cancers.


Assuntos
Glioblastoma , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Glioblastoma/metabolismo , Multiômica , Receptores de Antígenos de Linfócitos T/metabolismo
12.
J Exp Clin Cancer Res ; 42(1): 92, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37072838

RESUMO

BACKGROUND: One of the key limitations of targeted cancer therapies is the rapid onset of therapy resistance. Taking BRAF-mutant melanoma as paradigm, we previously identified the lipogenic regulator SREBP-1 as a central mediator of resistance to MAPK-targeted therapy. Reasoning that lipogenesis-mediated alterations in membrane lipid poly-unsaturation lie at the basis of therapy resistance, we targeted fatty acid synthase (FASN) as key player in this pathway to evoke an exquisite vulnerability to clinical inducers of reactive oxygen species (ROS), thereby rationalizing a novel clinically actionable combination therapy to overcome therapy resistance. METHODS: Using gene expression analysis and mass spectrometry-based lipidomics of BRAF-mutant melanoma cell lines, melanoma PDX and clinical data sets, we explored the association of FASN expression with membrane lipid poly-unsaturation and therapy-resistance. Next, we treated therapy-resistant models with a preclinical FASN inhibitor TVB-3664 and a panel of ROS inducers and performed ROS analysis, lipid peroxidation tests and real-time cell proliferation assays. Finally, we explored the combination of MAPK inhibitors, TVB-3664 and arsenic trioxide (ATO, as a clinically used ROS-inducer) in Mel006 BRAF mutant PDX as a gold model of therapy resistance and assessed the effect on tumor growth, survival and systemic toxicity. RESULTS: We found that FASN expression is consistently increased upon the onset of therapy resistance in clinical melanoma samples, in cell lines and in Mel006 PDX and is associated with decreased lipid poly-unsaturation. Forcing lipid poly-unsaturation in therapy-resistant models by combining MAPK inhibition with FASN inhibition attenuated cell proliferation and rendered cells exquisitely sensitive to a host of ROS inducers. In particular, the triple combination of MAPK inhibition, FASN inhibition, and the clinical ROS-inducing compound ATO dramatically increased survival of Mel006 PDX models from 15 to 72% with no associated signs of toxicity. CONCLUSIONS: We conclude that under MAPK inhibition the direct pharmacological inhibition of FASN evokes an exquisite vulnerability to inducers of ROS by increasing membrane lipid poly-unsaturation. The exploitation of this vulnerability by combining MAPK and/or FASN inhibitors with inducers of ROS greatly delays the onset of therapy resistance and increases survival. Our work identifies a clinically actionable combinatorial treatment for therapy-resistant cancer.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Lipídeos de Membrana/farmacologia , Lipídeos de Membrana/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
13.
Eur J Nucl Med Mol Imaging ; 50(4): 1134-1145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36435928

RESUMO

PURPOSE: Despite its limitations, [123I]MIBG scintigraphy has been the standard for human norepinephrine transporter (hNET) imaging for several decades. Recently, [18F]MFBG has emerged as a promising PET alternative. This prospective trial aimed to evaluate safety, biodistribution, tumour lesion pharmacokinetics, and lesion targeting of [18F]MFBG and perform a head-to-head comparison with [123I]MIBG in neural crest tumour patients. METHODS: Six neural crest tumour patients (4 phaeochromocytoma, 1 paraganglioma, 1 neuroblastoma) with a recent routine clinical [123I]MIBG scintigraphy (interval: - 37-75 days) were included. Adult patients (n = 5) underwent a 30-min dynamic PET, followed by 3 whole-body PET/CT scans at 60, 120, and 180 min after injection of 4 MBq/kg [18F]MFBG. One minor participant underwent a single whole-body PET/CT at 60 min after administration of 2 MBq/kg [18F]MFBG. Normal organ uptake (SUVmean) and lesion uptake (SUVmax; tumour-to-background ratio (TBR)) were measured. Regional distribution volumes (VT) were estimated using a Logan graphical analysis in up to 6 lesions per patient. A lesion-by-lesion analysis was performed to compare detection ratios (DR), i.e. fraction of detected lesions, between [18F]MFBG and [123I]MIBG. RESULTS: [18F]MFBG was safe and well tolerated. Its biodistribution was overall similar to that of [123I]MIBG, with prominent uptake in the salivary glands, liver, left ventricle wall and adrenals, and mainly urinary excretion. In the phaeochromocytoma subgroup, the median VT was 37.4 mL/cm3 (range: 18.0-144.8) with an excellent correlation between VT and SUVmean at all 3 time points (R2: 0.92-0.94). Mean lesion SUVmax and TBR at 1 h after injection were 19.3 ± 10.7 and 23.6 ± 8.4, respectively. All lesions detected with [123I]MIBG were also observed with [18F]MFBG. The mean DR with [123I]MIBG was significantly lower than with [18F]MFBG (61.0% ± 26.7% vs. 99.8% ± 0.5% at 1 h; p = 0.043). CONCLUSION: [18F]MFBG is a promising hNET imaging agent with favourable imaging characteristics and improved lesion targeting compared with [123I]MIBG scintigraphy. TRIAL REGISTRATION: Clinicaltrials.gov : NCT04258592 (Registered: 06 February 2020), EudraCT: 2019-003872-37A.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Adulto , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , 3-Iodobenzilguanidina/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Feocromocitoma/diagnóstico por imagem , Estudos Prospectivos , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem
14.
Oncoimmunology ; 11(1): 2139074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465485

RESUMO

Immunotherapies, in particular immune checkpoint blockade (ICB), have improved the clinical outcome of cancer patients, although many fail to mount a durable response. Several resistance mechanisms have been identified, but our understanding of the requirements for a robust ICB response is incomplete. We have engineered an MHC I/antigen: TCR-matched panel of human NSCLC cancer and T cells to identify tumor cell-intrinsic T cell resistance mechanisms. The top differentially expressed gene in resistant tumor cells was SERPINB9. This serine protease inhibitor of the effector T cell-derived molecule granzyme B prevents caspase-mediated tumor apoptosis. Concordantly, we show that genetic ablation of SERPINB9 reverts T cell resistance of NSCLC cell lines, whereas its overexpression reduces T cell sensitivity. SERPINB9 expression in NSCLC strongly correlates with a mesenchymal phenotype. We also find that SERPINB9 is commonly amplified in cancer, particularly melanoma in which it is indicative of poor prognosis. Single-cell RNA sequencing of ICB-treated melanomas revealed that SERPINB9 expression is elevated not only in cells from post- versus pre-treatment cancers, but also in ICB-refractory cancers. In NSCLC we commonly observed rare SERPINB9-positive cancer cells, possibly accounting for reservoirs of ICB-resistant cells. While underscoring SERPINB9 as a potential target to combat immunotherapy resistance, these results suggest its potential to serve as a prognostic and predictive biomarker.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Neoplasias , Serpinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Serina Proteinase/genética , Serpinas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Cutâneas , Neoplasias/genética
17.
Nature ; 610(7930): 190-198, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36131018

RESUMO

Although melanoma is notorious for its high degree of heterogeneity and plasticity1,2, the origin and magnitude of cell-state diversity remains poorly understood. Equally, it is unclear whether growth and metastatic dissemination are supported by overlapping or distinct melanoma subpopulations. Here, by combining mouse genetics, single-cell and spatial transcriptomics, lineage tracing and quantitative modelling, we provide evidence of a hierarchical model of tumour growth that mirrors the cellular and molecular logic underlying the cell-fate specification and differentiation of the embryonic neural crest. We show that tumorigenic competence is associated with a spatially localized perivascular niche, a phenotype acquired through an intercellular communication pathway established by endothelial cells. Consistent with a model in which only a fraction of cells are fated to fuel growth, temporal single-cell tracing of a population of melanoma cells with a mesenchymal-like state revealed that these cells do not contribute to primary tumour growth but, instead, constitute a pool of metastatic initiating cells that switch cell identity while disseminating to secondary organs. Our data provide a spatially and temporally resolved map of the diversity and trajectories of melanoma cell states and suggest that the ability to support growth and metastasis are limited to distinct pools of cells. The observation that these phenotypic competencies can be dynamically acquired after exposure to specific niche signals warrant the development of therapeutic strategies that interfere with the cancer cell reprogramming activity of such microenvironmental cues.


Assuntos
Proliferação de Células , Melanoma , Metástase Neoplásica , Animais , Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Rastreamento de Células , Reprogramação Celular , Células Endoteliais , Melanoma/genética , Melanoma/patologia , Mesoderma/patologia , Camundongos , Metástase Neoplásica/patologia , Crista Neural/embriologia , Fenótipo , Análise de Célula Única , Transcriptoma , Microambiente Tumoral
18.
Melanoma Res ; 32(6): 428-439, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125893

RESUMO

Phenotype switching is an emerging concept in melanoma research and deals with the cancer cell plasticity. In this paper, we present five cases of patients with metastatic malignant melanoma where the tumor underwent dramatic morphological and immunohistochemical changes thereby mimicking other types of malignancies. The diagnosis of melanoma in all these cases was based on the mutational profile of the tumor assessed by next-generation sequencing compared to the primary lesion or local regional lymph nodes. These cases highlight the importance of thorough diagnostic measures in patients with metastatic melanoma who show progressive disease and where basic pathological assessment shows a diagnostic discrepancy.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Plasticidade Celular , Metástase Linfática/patologia , Linfonodos/patologia
19.
Cancer Res ; 82(18): 3275-3290, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35834277

RESUMO

While immune checkpoint-based immunotherapy (ICI) shows promising clinical results in patients with cancer, only a subset of patients responds favorably. Response to ICI is dictated by complex networks of cellular interactions between malignant and nonmalignant cells. Although insights into the mechanisms that modulate the pivotal antitumoral activity of cytotoxic T cells (Tcy) have recently been gained, much of what has been learned is based on single-cell analyses of dissociated tumor samples, resulting in a lack of critical information about the spatial distribution of relevant cell types. Here, we used multiplexed IHC to spatially characterize the immune landscape of metastatic melanoma from responders and nonresponders to ICI. Such high-dimensional pathology maps showed that Tcy gradually evolve toward an exhausted phenotype as they approach and infiltrate the tumor. Moreover, a key cellular interaction network functionally linked Tcy and PD-L1+ macrophages. Mapping the respective spatial distributions of these two cell populations predicted response to anti-PD-1 immunotherapy with high confidence. These results suggest that baseline measurements of the spatial context should be integrated in the design of predictive biomarkers to identify patients likely to benefit from ICI. SIGNIFICANCE: This study shows that spatial characterization can address the challenge of finding efficient biomarkers, revealing that localization of macrophages and T cells in melanoma predicts patient response to ICI. See related commentary by Smalley and Smalley, p. 3198.


Assuntos
Melanoma , Segunda Neoplasia Primária , Antígeno B7-H1/genética , Biomarcadores , Comunicação Celular , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Melanoma/genética
20.
J Clin Oncol ; 40(29): 3430-3438, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35772044

RESUMO

PURPOSE: In rare cases, immune checkpoint inhibitors (ICIs) cause immune-mediated myocarditis. However, true incidence of other major adverse cardiovascular events (MACEs) after ICI treatment remains unknown, mainly because late occurring side effects are rarely reported in prospective clinical trials. The aims of this study were (1) to identify incidence and risk factors of MACE in a real-life ICI-treated cancer cohort and (2) to compare incidence rates with patients with cancer who are not treated with ICIs and population controls. METHODS: In total, 672 patients treated with ICIs were included. The primary end point was MACE, a composite of acute coronary syndrome, heart failure (HF), stroke, and transient ischemic attack. Secondary outcomes were acute coronary syndrome and HF separately. Incidence rates were compared between groups after matching according to age, sex, cardiovascular history, and cancer type. RESULTS: The incidence of MACE was 10.3% during a median follow-up of 13 (interquartile range, 6-22) months. In multivariable analysis, a history of HF (hazard ratio 2.27; 95% CI, 1.03 to 5.04; P = .043) and valvular heart disease (hazard ratio 3.01; 95% CI, 1.05 to 8.66; P = .041) remained significantly associated with MACE. Cumulative incidence rates were significantly higher in the ICI group compared with the cancer cohort not exposed to ICI and the population controls, mainly driven by a higher risk of HF events. CONCLUSION: Cardiovascular events during and after ICI treatment are more common than currently appreciated. Patients at risk are those with a history of cardiovascular disease. Compared with matched cancer and population controls, MACE incidence rates are significantly higher, suggesting a potential harmful effect of ICI treatment besides the underlying risk.


Assuntos
Síndrome Coronariana Aguda , Insuficiência Cardíaca , Neoplasias , Síndrome Coronariana Aguda/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Incidência , Neoplasias/tratamento farmacológico , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA